Evaluation of decellularized extracellular matrix of skeletal muscle for tissue engineering.
نویسندگان
چکیده
OBJECTIVE We evaluated the effectiveness of enzyme-detergent methods on cell removal of mouse skeletal muscle tissue and assessed the biocompatibility of the decellularized tissues by an animal model. METHODS The mouse latissimus dorsi (LD) muscles underwent decellularization with different enzyme-detergent mixtures (trypsin-Triton X-100, trypsin-sodium dodecyl sulfate (SDS), trypsin-Triton X-100-SDS). The effectiveness of decellularization was assessed by histology and DNA assay. The content in collagen and glycosaminoglycan was measured. The biomechanical property was evaluated in uniaxial tensile tests. For biocompatibility, the decellularized muscle specimens were implanted in situ and the tissue samples were retrieved at day 10, 20, and 30, to evaluate the host-graft inflammatory reaction. RESULTS Extensive washing of the mouse LD muscles with an enzyme-detergent mixture (trypsin and Triton X-100) can yield an intact matrix devoid of cells, depleted of more than 93% nuclear component and exhibiting comparable biomechanical properties with native tissue. In addition, we observed increased infiltration of inflammatory cells into the scaffold initially, and the presence of M1 (CD68)-phenotype mononuclear cells 10 days after implantation, which decreased gradually until day 30. CONCLUSIONS The enzyme-detergent method can serve as an effective method for cell removal of mouse skeletal muscle. In short-term follow-up, the implanted scaffolds revealed mild inflammation with fibrotic tissue formation. The decellularized extracelluar matrix developed herein is shown to be feasible for further long-term study for detailed information about muscle regeneration, innervation, and angiogenesis in vivo.
منابع مشابه
Tissue Engineering in Dentistery
Introduction Perforation of maxillary sinus mucous membrane is of the most prevalent complication during open sinus lift surgery. Moreover, such complication can usually be managed by an absorbable membrane. As far as absorbable membranes are concerned, decellularized maxillary sinus mucous membranes, which is an extracellular matrix, can be used as a biologic scaffold and insulating membrane ...
متن کاملMesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold
Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملMethod for decellularizing skeletal muscle without detergents or proteolytic enzymes.
Decellularized skeletal muscle is a promising model that can be used to study cell-matrix interactions and changes that occur in muscle extracellular matrix (ECM) in myopathies and muscle wasting diseases. The goal of this study is to develop a novel method to decellularize skeletal muscle that maintains the native biochemical composition and structure of the ECM. This method consists of sequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of artificial organs
دوره 37 7 شماره
صفحات -
تاریخ انتشار 2014